Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Synthesis === The four papers reviewed are dedicated to advancing the field of speech enhancement and restoration, aiming to improve the robustness and performance of speech recognition systems in noisy and degraded environments. The study by Donahue et al. explores the application of Generative Adversarial Networks (GANs) in speech enhancement, particularly their potential to improve the noise robustness of ASR systems. By operating GANs on log-Mel filterbank spectra, the study demonstrates the potential of GANs in improving ASR performance, although it does not surpass traditional multi-style training methods. This work emphasizes the importance of speech enhancement in the frequency domain and points to the possibility of further improving performance by combining GAN-enhanced audio with retrained ASR systems. Koizumi et al. propose Miipher, a robust speech restoration model that integrates self-supervised speech and text representations, aimed at addressing the issues of phoneme masking and deletion in speech restoration. Miipher increases the potential use of these samples in speech generation tasks by improving the quality of restored speech samples. The study highlights the importance of using w2v-BERT features and speaker embeddings in retaining textual content and speaker characteristics when dealing with various audio degradations. The work by Vinith Kishore et al. focuses on improving single-channel speech enhancement techniques using multilayer encoder-decoder structures and Temporal Convolutional Networks (TCNs). By determining the optimal number of encoder-decoder layers through t-SNE analysis, the study shows the effectiveness of the two-layer structure in enhancing speech quality and reducing word error rates. However, the study also points out limitations in diverse noise conditions and future directions, including the application of model optimization and compression techniques. Asante et al. explore the integration of self-attention mechanisms into multi-stage generative adversarial networks (GANs) for speech enhancement. The authors empirically study the effect of adding self-attention to the convolutional layers of the generators in two existing multi-stage GAN architectures: ISEGAN and DSEGAN. The experimental results demonstrate that incorporating self-attention leads to improvements in speech enhancement quality and intelligibility across objective evaluation metrics. The paper also finds that adding self-attention to ISEGAN's generators improves its performance to be competitive with DSEGAN while using a smaller model size, highlighting the potential of self-attention to improve the efficiency-performance tradeoff in multi-stage speech enhancement GANs. Overall, these studies collectively emphasize the importance of innovative approaches in the field of speech enhancement and restoration, whether through the use of GANs, self-supervised learning, deep learning techniques, or the integration of self-attention mechanisms. The findings from these studies contribute to the ongoing efforts in improving the robustness and performance of speech recognition systems in challenging environments, with potential applications in various domains such as telecommunications, assistive technologies, and human-computer interaction.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information