Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Park, D. S., Chan, W., Zhang, Y., Chiu, C. C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint arXiv:1904.08779. ==== * '''Summary''': The paper introduces SpecAugment, a straightforward data augmentation method for speech recognition tasks that operates directly on the feature inputs of a neural network. The method consists of time warping, frequency masking, and time masking applied to the log-mel spectrogram. This approach, despite its simplicity, achieves state-of-the-art results on the LibriSpeech 960h and Switchboard 300h datasets, outperforming more complex systems even without the use of Language Models. * '''RQ''': Can simple, computationally easy data augmentation techniques applied directly to the feature inputs of a neural network improve the performance of end-to-end automatic speech recognition systems? * '''Hypothesis''': Applying augmentation techniques such as time warping or time/frequency masking,directly on the log mel spectrogram may enhance the robustness and performance of speech recognition models, making them less prone to overfitting and more generalizable to various speech inputs. * '''Conclusion''': SpecAugment substantially enhances the performance of ASR systems, achieving top results on major speech recognition benchmarks even without the necessity for external language models, achieving 6.8% Word Error Rate, beating the previous results of state-of-the-art solutions with 7.5% WER. * '''Critical observations''': The least impactful contribution of time warping (compared to frequency/time masking) implies that, under constraints, time warping could be omitted. However, it still may be practical for whispering speech recognition where the temporal dynamics might differ from normal speech. * '''Relevance''': For whispering speech recognition, SpecAugment's ability to improve model generalization and robustness with minimal data could be particularly useful, addressing the common issue of data scarcity in this domain and making the model more robust to variations within whispered speech. Additionally, the simplicity of implementing SpecAugment allows easy integration into existing speech recognition frameworks such as Whisper model.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information