Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Patel, T., & Scharenborg, O. (2024). Improving End-to-End Models for Children’s Speech Recognition. ''Applied Sciences'', ''14''(6), 2353. ==== * '''Summary:''' Children’s Speech Recognition (CSR) is challenging due to variable speech patterns and limited annotated data. We aim to enhance CSR when no child speech data is available. Traditionally, Vocal Tract Length Normalization (VTLN) mitigates acoustic mismatch in hybrid systems, while End-to-End (E2E) systems use data augmentation. We investigate speed perturbations, spectral augmentation, and VTLN in E2E CSR systems across Dutch, German, and Mandarin. Our experiments show that speed perturbations and spectral augmentation significantly improve performance, with VTLN offering further enhancements while maintaining adult speech recognition. VTLN benefits both genders and is particularly effective for younger children. * '''RQ:''' How to enhance SCR performance while maintaining performance on adults’ speech when adapting the model to children’s speech? * '''Hypothesis:''' VLTN, speed perturbation, and spectral augmentation can be useful. * '''Conclusion:''' VLTN is used for the 1st times to improve E2E CSR work augmentation and normalization enhance CSR task performance the performance of adult speech is largely preserved similar observations in all 3 languages * '''Critical observations:''' Because VTLN needs to be trained independently and then used as a processing step after feature extraction to warp the features for training the ASR network architecture, it may not be compatible with architectures that utilize raw waveform data rather than features. As a result, integrating VTLN into such architectures requires further exploration. * '''Relevance:''' The study's focus on improving Automatic Speech Recognition (ASR) for children's speech, despite limited annotated data, holds relevance to the endeavor of enhancing ASR performance for older adults. Both populations present challenges due to variability in speech patterns and the scarcity of annotated data. Techniques explored in the study, such as Vocal Tract Length Normalization (VTLN) and data augmentation, offer potential solutions that could be adapted to address age-related changes in older adults' speech. Comparative analyses across languages and considerations of age and gender factors provide valuable insights applicable to developing tailored ASR systems for the older adult population. Overall, the study's methodologies and findings offer valuable parallels and considerations for researchers aiming to improve ASR performance for older adults.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information