Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Bae, S., Kim, J.-W., Cho, W.-Y., Baek, H., Son, S., Lee, B., Ha, C., Tae, K., Kim, S., & Yun, S.-Y. (2023). Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on Respiratory Sound Classification. Retrieved from <nowiki>https://arxiv.org/abs/2305.14032v4</nowiki> ==== Summary: The study introduces a novel approach for respiratory sound classification, leveraging a pretrained Audio Spectrogram Transformer (AST) model, alongside a new Patch-Mix augmentation technique and Patch-Mix Contrastive Learning. These methods are designed to address the challenges of medical data scarcity and enhance model performance on the ICBHI dataset. The approach sets a new state-of-the-art performance benchmark, improving the classification Score by 4.08% over previous methods. *RQ: Can a pretrained Audio Spectrogram Transformer (AST) model, combined with Patch-Mix augmentation and Patch-Mix Contrastive Learning, effectively improve respiratory sound classification, especially in the context of the ICBHI dataset? * Hypothesis: The hypothesis posits that leveraging a pretrained AST model, which has been trained on large-scale visual and audio datasets, can be effectively generalized to respiratory sound classification tasks. Additionally, it suggests that the introduction of Patch-Mix augmentation and Patch-Mix Contrastive Learning can further enhance model performance by addressing the scarcity of medical data and the challenges of leveraging such data for deep learning models. * Conclusion: The study concludes that the proposed approach, combining a pretrained AST model with Patch-Mix augmentation and Patch-Mix Contrastive Learning, significantly enhances respiratory sound classification. This method achieved state-of-the-art performance on the ICBHI dataset, demonstrating the effectiveness of the proposed techniques in improving classification accuracy in the face of limited medical data availability and complex data characteristics. * Critical observations: ** Pre-training on both visual and audio domains using the AST model shows substantial improvements in generalizing to respiratory sound classification tasks. ** The Patch-Mix augmentation technique, which randomly mixes patches between different samples, and the Patch-Mix Contrastive Learning method, which distinguishes mixed representations in the latent space, effectively mitigate the overfitting issue and enhance model robustness. ** The study's methodology offers a significant performance increase, demonstrating the potential of attention-based models and contrastive learning in medical sound classification. * Relevance: This research holds relevance to Automatic Speech Recognition (ASR) by showcasing the utility of attention-based models like the AST in capturing long-range dependencies in audio data. The techniques developed for respiratory sound classification, particularly the effective use of pretrained models and innovative augmentation strategies, can inform similar challenges in ASR, including dealing with limited training data and enhancing model generalization across diverse audio inputs.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information