Editing
Hidden Markov Models
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Future Research == Hidden Markov Models continue to evolve in tandem with technological advancements. In the realm of speaker recognition, the utilization of speech recognition based on space diversity using distributed multi-microphone is prevalent.<ref>Shimizu Y, Kajita S, Takeda K, et al. Speech recognition based on space diversity using distributed multi-microphone[C]//2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100). IEEE, 2000, 3: 1747-1750.</ref> While they have played a significant role in speaker recognition, recent strides in speech synthesis and deep learning AI have empowered computers to mimic human-like sounds with remarkable precision. This evolution in speech technology has raised ethical and privacy concerns. As speech recognition technology becomes increasingly integrated into daily life, there is growing apprehension that malicious actors may illicitly collect individuals' voice characteristics and exploit them for fraudulent purposes, such as phone scams. In the foreseeable future, research endeavors may center on the creation of more robust and privacy-conscious methodologies for speaker identification and verification. These efforts aim to mitigate the risks associated with misuse and breaches of privacy and voice data in the context of voice recognition technology. Furthermore, HMMs demonstrate a remarkable ability to handle low-quality and noisy data and address challenges related to speaker independence, surpassing many alternative methods in these domains.<ref>Radha V, Vimala C. A review on speech recognition challenges and approaches[J]. doaj. org, 2012, 2(1): 1-7.</ref> However, practical application reveals that HMM-based speech recognition still faces challenges, particularly in noisy environments, accommodating various speaking styles (e.g. shouting or whispering), and dealing with individuals who have conditions like dysarthria, including children with developing vocal organs. The recognition accuracy in these scenarios unfortunately falls short of the desired level. To overcome these limitations, ongoing research should emphasize innovation and advancement within the HMM technology framework. The goal is to substantially enhance recognition accuracy, especially in challenging scenarios and conditions. In summary, the dynamic nature of HMMs in the context of voice recognition technology is underscored by evolving ethical and privacy challenges and continuous research efforts to improve recognition accuracy.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information