Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Kong, J., Kim, J., & Bae, J. (2020). Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. ''Advances in neural information processing systems'', ''33'', 17022-17033. ===== * Summary: This article introduces HiFi-GAN, a model that can efficiently synthesize high-quality speech audio. HiFi-GAN consists of a generator and two discriminators: multi-scale discriminator and multi-period discriminator. Improve training stability and model performance by adversarially training the generator and discriminator and using two additional loss functions. * RQ:Can HiFi-GAN effectively synthesize high-quality speech audio with computational efficiency comparable to human-level synthesis, while also demonstrating generalization across speakers and adaptability to various configurations? * Hypothesis:By leveraging the characteristic patterns of speech audio and designing a discriminator to capture these patterns effectively, it is possible to develop a speech synthesis model, HiFi-GAN, that outperforms existing models in terms of synthesis quality and speed. * Conclusion:HiFi-GAN significantly advances speech synthesis by efficiently generating high-quality audio, surpassing existing models in both synthesis quality and speed. By leveraging speech audio patterns and a carefully designed discriminator, this model demonstrates robustness across various scenarios, including unseen speakers and noisy inputs, while offering potential for on-device natural speech synthesis with low latency and memory requirements. Additionally, the flexibility of generator configurations enhances adaptability without the need for extensive hyper-parameter search. * Critical observations:Due to the wide application of HiFi-GAN technology in the field of speech synthesis, there may be some ethical or social impacts, including concerns related to voice cloning, privacy and false information. * Relevance:This paper is closely related to the topic of non-language-specific text-to-speech, as it demonstrates a breakthrough in HiFi-GAN models in synthesizing high-quality speech, with generalization capabilities, and the ability to handle inputs of different languages and speaking styles.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information