Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Wells D, Richmond K. Cross-lingual transfer of phonological features for low-resource speech synthesis[C]//Proceedings of the 11th Speech Synthesis Workshop, Budapest, Hungary. 2021: 160-165. ==== * Summary: In this paper, researchers compare two methods: fine-tuning phonemic representations and using phonological features. They used SPE-style phonological features, offering a binary representation of phonemes, which helps describe and analyze speech patterns in English and German. The study discovers that even with limited target language data, fine-tuning can generate speech comparable to models trained from scratch. Using phonological features slightly improves naturalness ratings compared to using phonemes alone. These findings highlight the practical benefits of phonological features in improving TTS output quality across languages. * RQ: Does the use of different input representations (phonemes and phonological features) affect the naturalness of synthesized speech in text-to-speech synthesis using cross-lingual transfer learning? * Hypothesis: In cross-lingual transfer learning for text-to-speech synthesis, the use of different input representations (phonemes and phonological features) affects the naturalness of synthesized speech. * Conclusion: The study confirmed the effectiveness of cross-lingual fine-tuning for training synthetic voices with limited target language data. Phonological features were found to offer practical benefits over phonemes in terms of parameter sharing during transfer learning. * Critical observations: There was a slight improvement in naturalness ratings when using PFs over phonemes. Future research may explore multilingual grapheme-to-phoneme systems and utilize additional linguistic resources to enhance low-resource pipelines for text-to-speech synthesis * Relevance: Phonological features were found to offer practical benefits over phonemes in terms of parameter sharing during transfer learning, which can be applied greatly in LRLs TTS.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information