Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Schultz, B.G., Tarigoppula, V.S.A., Noffs, G. ''et al.'' Automatic speech recognition in neurodegenerative disease. ''Int J Speech Technol'' 24, 771β779 (2021). <nowiki>https://doi-org.proxy-ub.rug.nl/10.1007/s10772-021-09836-w</nowiki> ==== *Summary: The paper evaluates the performance of three state-of-the-art automatic speech recognition (ASR) platforms (Amazon Web Services, Google Cloud, and IBM Watson) on speech from individuals with neurodegenerative diseases (multiple sclerosis and Friedreich's ataxia) and healthy controls. * RQ: How well do commercial ASR systems perform on dysarthric speech from individuals with neurodegenerative diseases compared to healthy speech? * Hypothesis: ASR accuracy will be lower for dysarthric speech from neurodegenerative disease groups compared to healthy controls, and accuracy will decline with increased disease severity and duration. * Conclusion: ASR accuracy was significantly higher for healthy controls than clinical groups, and higher for multiple sclerosis compared to Friedreich's ataxia. Amazon Web Services and Google Cloud outperformed IBM Watson. Accuracy decreased with increased disease duration for Friedreich's ataxia but not multiple sclerosis. Age and sex did not significantly affect ASR accuracy. * Critical observations: ** ASR faces challenges in recognizing dysarthric speech from neurodegenerative diseases. ** Accuracy declines as consecutive words increase, irrespective of speech impairment. ** Severity of speech impairment, as indicated by disease type and duration, negatively impacts ASR accuracy. * Relevance: The theme focuses on low-resource ASR for underrepresented languages. While this study does not directly address low-resource languages, it highlights the challenges ASR systems face in recognizing atypical speech patterns, which is relevant for low-resource languages with diverse speaker populations and dialects. Improving ASR performance on dysarthric speech could inform techniques for handling speech variability in low-resource settings.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information