Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Yi, C., Wang, J., Cheng, N., Zhou, S., & Xu, B. (2021). ''Applying Wav2vec2.0 to Speech Recognition in Various Low-resource Languages'' (arXiv:2012.12121). arXiv. <nowiki>http://arxiv.org/abs/2012.12121</nowiki> ==== *Summary: The authors applied the pre-trained wav2vec2.0 model to low-resource speech recognition across six languages. Despite being pre-trained on a different domain, wav2vec2.0 could effectively adapt when fine-tuned on limited transcribed speech, even outperforming supervised pre-training approaches. Using coarser modeling units like subwords/characters worked better than finer units like phonemes/letters. Critically, self-supervised pre-training on large unlabeled data enabled wav2vec2.0 to learn robust speech representations that transferred well across languages and domains, showcasing its impressive potential for tackling low-resource speech tasks. *RQ: Can the pre-trained wav2vec2.0 model, which was trained on English audiobook data, be effectively applied to low-resource speech recognition tasks in various languages and real-world spoken scenarios? * Hypothesis: The self-supervised pre-training of wav2vec2.0 allows it to learn general acoustic representations that can be adapted to different languages and domains, even with limited transcribed data. * Conclusion: The experiments demonstrate that wav2vec2.0 can achieve significant performance improvements on low-resource speech recognition tasks across six languages (Arabic, English, Mandarin, Japanese, German, and Spanish) compared to previous methods. The largest gain of 52.4% was observed for English, likely due to the pre-training data being in English. Using coarser-grained modeling units like subwords or characters generally performed better than finer-grained units like phones or letters. * Critical observations: *# Self-supervised pre-training on a large amount of unlabeled data from other languages can be more effective than supervised pre-training on limited target language data. *# The encoder-decoder structure did not perform well in low-resource scenarios, possibly due to the decoder's inability to generalize from sparse transcriptions. *# External language models provided significant performance gains across all languages, model sizes, and modeling units. *Relevance: This research highlights the potential of self-supervised pre-trained models like wav2vec2.0 to alleviate the data scarcity problem in low-resource speech recognition tasks. It demonstrates the model's ability to adapt to various languages and spoken domains, even when pre-trained on data from a different domain (audiobooks). The findings suggest that large-scale self-supervised pre-training can learn robust acoustic representations that can be effectively transferred to downstream tasks with limited data.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information