Editing
Carnegie Mellon's Harpy System
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Future research == For Harpy system, the majority of time used by the system (more that 64%)<ref name=":0" /> is for the generation ofthe autocorrelation and linear predictor coefficients. This problem is not unique to Harpy; all speech systems that use this parametric scheme must face this problem. The computational complexity of generating autocorrelation and linear prediction coefficients for speech recognition is still a challenge even with modern techniques and hardware. But the raw computational requirements are still very high for real-time low-latency speech recognition with modern neural network models. Hardware and algorithms have improved, providing much higher peak computing capacities, but real-time performance still requires significant optimization and acceleration. It is an active area of research to find faster and less resource-intensive approaches suitable for embedded/edge applications.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information