Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Gandhi, S., von Platen, P., & Rush, A. M. (2023). Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling. ''arXiv preprint arXiv:2311.00430''. ==== * Summary: The study introduces a novel approach to compressing pre-trained large speech recognition models for efficient deployment in low-resource environments. By leveraging large-scale pseudo-labeling, the research achieves a smaller variant, Distil-Whisper, which significantly reduces the model size and inference time without considerably sacrificing performance. This method particularly benefits low-resource languages by maintaining robustness across various acoustic scenarios and demonstrating potential in extending sophisticated ASR capabilities to languages with limited training data. * RQ: How can the size of pre-trained speech recognition models, specifically the Whisper model, be reduced for efficient deployment in low-latency or resource-constrained environments while maintaining model robustness and performance? * Hypothesis: By using pseudo-labelling to create a large-scale open-source dataset and applying a simple word error rate (WER) heuristic to select only the highest quality pseudo-labels for training, it is possible to distill the Whisper model into a smaller variant (Distil-Whisper) that is significantly faster and more parameter-efficient without substantially sacrificing performance. * Conclusion: Distil-Whisper successfully demonstrates the feasibility of distilling a large-scale speech recognition model into a significantly smaller and faster version without substantial loss in performance. The distilled model achieves a WER performance within 1% of the original Whisper model on out-of-distribution test data, maintains robustness against difficult acoustic conditions, and reduces the propensity for hallucination errors in long-form audio. Furthermore, Distil-Whisper, when paired with Whisper for speculative decoding, offers a significant speed-up in inference times while ensuring identical outputs to the original model. * Critical Observations: The approach underscores the effectiveness of large-scale pseudo-labelling and a straightforward WER-based heuristic in filtering training data for distillation purposes. The research highlights a crucial balance between model size, speed, and performance robustness, contributing to practical speech recognition applications, especially in constrained environments. * Relevance: The methodology demonstrates potential for extending sophisticated ASR capabilities to languages with fewer resources by leveraging transfer learning and pseudo-labeling techniques.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information