Editing
State-of-the-art
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Wang, S., Rohdin, J., Plchot, O., Burget, L., Yu, K., & Cernocky, J. (2020). Investigation of Specaugment for Deep Speaker Embedding Learning. ''ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)'', 7139β7143. <nowiki>https://doi.org/10.1109/ICASSP40776.2020.905348</nowiki> ==== * Summary: The article investigates the effectiveness of SpecAugment, a data augmentation method, for speaker verification tasks using TDNN and ResNet34 models with Softmax and AAMSoftmax loss functions. Experiments on NIST SRE 2016 Cantonese and Tagalog subsets and Voxceleb1 dataset show improved performance with SpecAugment, achieving 3.72% and 11.49% EER for NIST SRE 2016 Cantonese and Tagalog, respectively, and 1.47% EER for Voxceleb1. SpecAugment demonstrates promising results for speaker verification across different languages, enhancing system robustness without complex offline augmentation. * RQ: How effective is SpecAugment, a data augmentation method originally proposed for speech recognition, when applied to speaker verification tasks across different languages, specifically Cantonese and Tagalog? * Hypothesis: Applying SpecAugment, a data augmentation technique initially developed for speech recognition, to speaker verification tasks will lead to performance improvements across different languages, including Cantonese and Tagalog. * Conclusion: Implementing SpecAugment for speaker verification tasks yields significant performance improvements across different languages. Specifically, the study demonstrates that SpecAugment, applied on-the-fly without complex offline augmentation methods, achieves state-of-the-art results in speaker verification tasks for Cantonese and Tagalog, as well as for the Voxceleb1 dataset. * Critical observations: The critical observation of the article focuses on the implementation of SpecAugment for speaker verification tasks across various languages, particularly Cantonese and Tagalog, which are considered low-resource languages. The study demonstrates that SpecAugment, applied on-the-fly, effectively improves performance in speaker verification tasks for these languages, achieving significant reductions in Equal Error Rate (EER) compared to traditional methods. This highlights the potential of SpecAugment as a simple yet powerful augmentation technique, particularly beneficial for low-resource language processing tasks. * Relevance: The relevance of the article to the topic of low-resource language Automatic Speech Recognition (ASR) lies in its exploration of SpecAugment as a data augmentation technique for speaker verification tasks in languages like Cantonese and Tagalog, which are considered low-resource. By demonstrating the effectiveness of SpecAugment in improving performance in speaker verification tasks for these languages, the study showcases a potential solution to the challenges posed by limited data availability in low-resource language ASR. This highlights SpecAugment as a valuable tool for enhancing ASR systems' robustness and accuracy in under-resourced linguistic contexts.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information