Editing
Hidden Markov Models in Speech Synthesis
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Introduction == Hidden Markov Model (HMM)-based speech synthesis is a remarkably effective technique in synthesizing speech. The most attractive part of HTS system is that speaker identities, speaking styles, or emotions can easily be modified by transforming HMM parameters using various techniques such as adaptation, interpolation, Eigen voice, Or multiple Regression. In the realm of Text-to-speech (TTS) synthesis, the main goal is to transform input text into intelligible and natural sounding speech. The TTS components involves the two phases, the front end and the back end. The front end analyses the text, creates possible pronunciations for each word in the context with grapheme to phoneme conversion. The back end generates the speech waveform along with the prosody of the sentence to be spoken. The evaluation of TTS system is based on three critical attributes: accuracy, intelligibility, and naturalness. The HTS system provides the frequency spectrum (Vocal tract), fundamental frequency (vocal source) and duration (Prosody) of speech, which are statistically generated by using HMM based on maximum likelihood criterion. HTS system is an open source tool which provides a research and development platform for statistical parametric speech synthesis. The HMM-based speech synthesis system (HTS) has been developed by the HTS working group as an extension of the HMM toolkit (HTK)<ref>Kayte, S., Mundada, M., & Gujrathi, J. (2015). Hidden Markov model based speech synthesis: A review. ''International Journal of Computer Applications'', ''130''(3), 35-39.</ref>.
Summary:
Please note that all contributions to MSc Voice Technology are considered to be released under the Creative Commons Attribution (see
MSc Voice Technology:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information